Probing the intracellular redox status of tumors with magnetic resonance imaging and redox-sensitive contrast agents.
نویسندگان
چکیده
Nitroxide radicals are paramagnetic contrast agents, used in magnetic resonance imaging (MRI), that also exert antioxidant effects. Participating in cellular redox reactions, they lose their ability to provide contrast as a function of time after administration. In this study, the rate of contrast loss was correlated to the reducing power of the tissue or the "redox status." The preferential reduction of nitroxides in tumors compared with normal tissue was observed by MRI. The influence of the structure of the nitroxide on the reduction rate was investigated by MRI using two cell-permeable nitroxides, 4-hydroxy-2,2,6,6,-tetramethyl-1-piperidynyloxyl (Tempol) and 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (3CP), and one cell-impermeable nitroxide, 3-carboxy-2,2,5,5,5-tetramethylpyrrolidine-1-oxyl (3CxP). Pharmacokinetic images of these nitroxides in normal tissue, tumor, kidney, and artery regions in mice were simultaneously obtained using MRI. The decay of Tempol and 3CP in tumor tissue was significantly faster than in normal tissue. No significant change in the total nitroxide (oxidized + reduced forms) was noted from tissue extracts, suggesting that the loss in contrast as a function of time is a result of intracellular bioreduction. However, in the case of 3CxP (membrane impermeable), there was no difference in the reduction rates between normal and tumor tissue. The time course of T(1) enhancement by 3CxP and the total amount of 3CxP (oxidized + reduced) in the femoral region showed similar pharmacokinetics. These results show that the differential bioreduction of cell-permeable nitroxides in tumor and normal tissue is supported by intracellular processes and the reduction rates are a means by which the intracellular redox status can be assessed noninvasively.
منابع مشابه
[Redox Molecular Imaging Using ReMI].
Tissue redox status is one of the most important parameters to maintain homeostasis in the living body. Numerous redox reactions are involved in metabolic processes, such as energy production in the mitochondrial electron transfer system. A variety of intracellular molecules such as reactive oxygen species, glutathione, thioredoxins, NADPH, flavins, and ascorbic acid may contribute to the overa...
متن کاملDynamic Contrast Magnetic Resonance Imaging (DCE-MRI) and Diffusion Weighted MR Imaging (DWI) for Differentiation between Benign and Malignant Salivary Gland Tumors
Background: Salivary gland tumors form nearly 3% of head and neck tumors. Due to their large histological variety and vicinity to facial nerves, pre-operative diagnosis and differentiation of benign and malignant parotid tumors are a major challenge for radiologists. Objective: The majority of these tumors are benign; however, sometimes they tend to transform into a malignant form. Functional M...
متن کاملGadolinium-Diethylenetriaminepenta-Acetic acid Conjugated with Monoclonal Antibody C595 as New Magnetic Resonance Imaging Contrast Agents for Breast Cancer (MCF-7) Detection
Background: The monoclonal antibody, C595, against breast cancer cell line was conjugated with cyclic anhydride gadolinium-diethylenetriaminepenta-acetic acid (Gd-cDTPAa) to produce Gd-DTPA-C595 and used as specific breast cancer cell line (MCF-7) contrast agents in magnetic resonance imaging (MRI). Methods: After incubation of breast cancer cell line (MCF-7), with different contrast agents (G...
متن کاملA New Potential Contrast Agent for Magnetic Resonance Imaging: Iron Oxide-4A Nanocomposite
Background: Magnetic resonance imaging (MRI) contrast agents have an important role to differentiate healthy and diseased tissues. Access and design new contrast agents for the optimal use of MRI are necessary. This study aims to evaluate iron oxide–4A nanocomposite ability to act as a magnetic resonance imaging contrast agent.Materials and Methods: Iron oxide–4A nanocomposite (F4A) was syn...
متن کاملThe Assessment of Toxicity Characteristics of Cellular Uptake of Paramagnetic Nanoparticles as a New Magnetic Resonance Imaging Contrast Agent
Nanoparticles are unique that enable many promising medical and technological applications intheir physical, and chemical properties. It is widely accepted that nanoparticles should bethoroughly tested for health nanotoxicity, but a moderate risk analysis is currently prevented by arevealing absence of mechanistic knowledge of nanoparticle toxicity. The purpose of this study<b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer research
دوره 66 20 شماره
صفحات -
تاریخ انتشار 2006